3.2.22 フルオロ CNT

1.はじめに

固体炭素材料とフッ素の反応は工業的見地からも学術的見地からもきわめて興味深く, これまでに非常に多くの実験的,理論的研究が報告されている.実験的に取り扱われた炭 素材料,フッ素源はともに多岐にわたり,また,反応条件も広範囲におよんでおり,最表 面のフッ素付加からバルク内部のフッ素化まで実に多様な炭素のフッ化物が合成されてい る^{1,2)}.面白いことに,この炭素のフッ化物はたった2つの元素から構成されているにもか かわらず非常にバラエティに富んだ物性,機能を示すことが知られている.このような多 様性は C-F 結合の結合性に起因すると理解されている.これまでに報告された炭素のフッ 化物に関する論文中に,この C-F 結合性の評価に関わり,しばしば半共有性 C-F 結合(あ るいは半イオン性 C-F 結合)なる用語がみられる.C-F 結合にはイオン結合性のものと共有 結合性のもののほかにこの中間の結合状態も存在することを示すための用語である.図1 に示すように,この結合性の評価は主に X 線光電子分光(XPS)における Cls および Fls スペクトルの束縛エネルギー値で行われている.多種多様な炭素のフッ化物の C-F 結合性 がこの指標により分類され,体系的な理解が行われているが詳細は成書を参照されたい^{1,2)}

本節では、カーボンナノチューブ(CNT)とフッ素との反応、生成物の性質・機能を概観した後、フルオロ単層カーボンナノチューブ(単層カーボンナノチューブ(SWCNT)のフッ化物;フッ化SWCNT)の生成、構造と性質、エネルギーデバイスへの応用を目指したリチウム電池正極特性に注目して詳述する.

2. CNT とフッ素との反応

CNT とフッ素との反応について見ていこう. CNT とフッ素の反応についての初めての報告は Nakajima ら³⁾ による多層カーボンナノチューブ(MWCNT)と単体フッ素ガスの反応に始まる.その後,MWCNT のフッ化物についての論文が多数発表され,いくつかは興味深い物性を示すことが報告されている.しかし,MWCNT の場合,その壁構造はグラフェンシートのような結晶性の良いものからアモルファスカーボンで構成されたものまで構造に幅が大きく,体系的な理解を行うことは残念ながら困難である.これに対して1990年代後半になって比較的純度の高い SWCNT が合成されるようになるとフッ素化反応も行われ,次々に面白い現象が報告された(図 2 (a)-(d)).以下にいくつかの事象を取り上げる.

フッ素化した SWCNT を高温で脱フッ素化すると短く切断された SWCNT が得られることが報告されている^{4,5)}.これはフッ素が SWCNT 側面に均一に反応するのではなく特定の部位に局所的に反応し、脱フッ素化する際にその部分で切断されるためであると説明され

た. SWCNT を物理的に切断するのは容易ではないので短い SWCNT を得る手法として注目 されている.フッ素化反応を利用すると 40 nm 以下にまで切断できるが他の手法では一般 に 100 nm 以下に短くすることは困難である.

 C_2F 程度まで高フッ素化させた SWCNT は2プロパノールに少なくとも1 mg/l 程度分散さ せることができ、数日間分散状態を保持できると報告されている⁶⁰.このようなことは未 反応の SWCNT では見られないのでフッ素化による効果である.後にこの分散溶液中のフ ルオロ SWCNT の AFM 測定が行われ、溶液中では大部分が孤立分散していることが確認さ れた⁷⁰.溶液とフルオロ SWCNT との間に化学反応は認められないことから、この特異な分 散特性は溶媒分子の水素結合によるものと理解される.最近、このような視点からピレン 分子にフッ素を付加したものとメタノールの間の水素結合エネルギーを理論計算により評 価することによりフルオロ SWCNT の特異な分散特性を理解しようとの試みが行われた⁸⁰. ピレン分子の曲率を変えて計算を行うと水酸基との相関エネルギーが大きく変化すること が示されたが、フルオロ SWCNT の特異な分散特性を十分に説明できたとは残念ながら言 い難い.

グラファイトはその層間に多種多様なゲスト分子を向かい入れ膨大な数の層間化合物を 生成する.しかし、グラファイトの層(グラフェンシート)に共有結合により異種分子を 導入することは一般に容易ではない. これはグラフェンシートの広大な π 共役系が化学的 にきわめて安定であり、不活性であるからと理解される.SWCNT は曲率がある分反応性が 高いとはいえ、基本的にはこの不活性なグラフェンシートを丸めたものである.したがっ て、今でこそ SWCNT 側面の化学修飾技法は数多く知られるようになったものの、SWCNT 発見当初はチューブ側面への化学修飾は容易ではないと考えられていた。そのような中で フッ素化は早くから化学修飾の第一段階として期待され、実際これまでに多くの化学修飾 がフルオロ SWCNT を経由することで行われてきている ^{9,10}. つまり, 一旦フッ素の強い反 応性を利用してフルオロ SWCNT を合成した後,置換反応によりさまざまな化学修飾を行 うのである. SWCNT とフッ素との反応性は大雑把に言えばフラーレン C60 よりは反応しに くいが、グラファイトよりは反応しやすく SWCNT へのフッ素付加はさまざまな条件で行 われてきた. 生成したフルオロ SWCNT と末端にアミノ基がついたジアミン (H₂N(CH₂)_nNH₂ (n=2,3,4,6))をピリジン存在下で3時間還流するとフッ素とアミノ基の置換 が起こる.このような反応を基本にナノチューブを架橋して新しいポリマーを合成したり、 アミノアルコールやアルコキシランなどによる多様な化学修飾が展開されている. このよ うな化学修飾は溶媒への分散特性を変えるだけでなく SWCNT の繊維強化プラスチックへ の応用の際にナノチューブとポリマーとの界面に新たな結合サイトを設けることになるな どナノチューブの実用化に向けて重要な技術であることは間違いない.

さて、これまで SWCNT とフッ素との反応について述べてきたが、一口に SWCNT とい

ってもグラフェンシートの巻き上げ方(カイラリティ)により直径や導電性(金属,半導体)は異なる.カイラリティごとの物性を調べたいが残念ながら現在の合成技術では直径別,導電性別の選択合成は困難である.そこで現在注目されているのが,金属・半導体SWCNTの分離技術の開発である.ここ数年の間に,ジアゾニウム塩の金属ナノチューブへの選択的反応,アミンの金属ナノチューブへの特異吸着,NO₂SbF₆および NO₂BF₄による半導体ナノチューブの分取,DNA 包摂を利用した金属・半導体チューブの分離,H₂O₂による金属 SWCNT の濃縮など分離技術に関する報告が相次いで発表されている.これらはいずれも化学反応・吸着の選択性を利用したものであるが,いずれも液相中の反応であることが共通する.これに対して SWCNT とフッ素ガスの反応は気相反応であるが,反応の初期段階では直径の小さい金属 SWCNT が選択的にフッ素化されることを筆者らは指摘してきた.最近,韓国のLee のグループも同様の報告をしている¹¹⁾.さきに述べたようにフルオロ SWCNT と未反応のものとでは溶媒に対する分散性が異なるので,これを利用して分離することも可能であり今後の研究の進展が期待される.

フラーレンや SWCNT 以外にも, カーボンナノホーン¹², カップ積層型カーボンナノ チューブ¹³, 二層カーボンナノチューブ¹⁴等, ナノカーボンのフッ素化に関する報告 も近年増えてきた. とくに, カーボンナノホーンにおいてはフッ素ガス貯蔵の可能性が 示される等, 新たな応用の展開を目指した研究が関心を呼んでいる.

3. フルオロ単層カーボンナノチューブ

前節で SWCNT とフッ素との反応について、おもに生成物の興味ある機能について述べてきたが、ここではその反応メカニズムや結合特性について少し掘り下げてみたい.

まず、C-F 結合特性については前節で紹介したように XPS 測定により求められる Cls, Fls 束縛エネルギーが重要な情報を与える.表1 はこれまでに報告があったフルオロ SWCNT の Cls, Fls 束縛エネルギーをまとめたものである. SWCNT の代表的な合成法であるレーザ 一蒸発法,アーク放電法,化学気相蒸着法(CVD)法の3通りの方法で合成された SWCNT すべてに対してフッ素化が行われている.SWCNT 合成法により得られるチューブのカイラ リティ分布,平均直径は大きく異なるが,表1 をみるとそうしたことに関わらず反応温度 が 100-250℃程度で合成されたフルオロ SWCNT の Fls 束縛エネルギーは1 つの例外を除い て 287-288 eV の範囲に収まっている.この値は図1の分類に従えば共有結合性に近い半共 有性に分類される.一方,室温でフッ素化したフルオロ SWCNT の Fls 束縛エネルギーは表 1 のエントリ1,5 に示すように有意に小さな値を示しイオン的な結合である.エントリ1は CVD(HiPco)法で合成された SWCNT を使用しており,その直径分布は1.2-0.8 nm 程度と広 い.これに対してエントリ5の SWCNT はレーザー蒸発法で作成され 1.4-1.5 nm 程度の分 布である.フッ素化は直径の小さな金属チューブから起こると考えられるので室温で処理 したフッ素付加量の小さいエントリ 1,5 ではフルオロ SWCNT の直径は大きく異なるはず である.それにも関わらず両者ともイオン的な結合を示すことは興味深い.素直にデータ を見ればフッ素処理温度が C-F 結合特性を規定していると考えられるが,私たちは組成に も注目すべきだと考える.室温で処理したものは 100-250℃程度で処理したものに比べフッ 素付加量がかなり小さい.フッ素付加量の小さいところ,つまり反応の初期段階ではナノ チューブへのフッ素のアタックは分散して起こると思われる.フッ素付加が起こったとこ ろは未反応の部分に比べて活性が大きいので後続のフッ素付加はその部分に集中する.し たがってフッ素と炭素の原子比 F/C が大きいところではフッ素の面密度が高い箇所が生成 しているはずである.最近, (8,8) SWCNT にフッ素を付加した際の F1s 束縛エネルギーに関 する理論計算が行われた²²⁾.この計算によると炭素の六角網面上にフッ素が隣り合わせで 付加した場合は離れて付加した場合に比べ F1s 束縛エネルギーが大きくなることが示され ている.このことは F/C が大きくなりフッ素が特定の部分に集中して付加するようなこと が起こると F1s 束縛エネルギーが高くなることを示唆している.

さて、フッ素化温度が250℃を超えるような高温処理をした場合はどういうことが起こる だろうか. これについては表1エントリ9に示すようにFls 束縛エネルギーが PTFE と同程 度になり共有結合的 C-F 結合が形成されるとの報告がある. 私たちの実験でも同様なこと が観測されているが、これをフルオロ SWCNT の半共有性 C-F 結合から共有 C-F 結合への 転移と捉えることには注意が必要である. なぜならば、このような高い Fls 束縛エネルギー を有するフルオロ SWCNT の TEM 観察を行うとチューブ構造が明瞭に観測できないものが 多いからである. つまり、高温でのフッ素処理により SWCNT の構造が破壊されることが あるので注意が必要である. また、フッ素付加量が大きくなると試料の導電性が急激に小 さくなるので XPS 測定の際にチャージアップの効果が著しくなる. 測定法・補正法を誤る と全く違う位置にピークが観測されることがあるので、表1エントリ3のように大きくは ずれた値が得られたときは実験方法を再確認したほうが良いであろう.

次にフルオロ SWCNT の構造について見ていこう. SWCNT の構造を解析するためにラマ ンスペクトルが良く利用されるが,フルオロ SWCNT についても多数の報告例がある¹⁸⁾. これらの報告に共通することはフッ素化が起こると RBM (Radial Breathing Mode) が観測さ れなくなること,Dバンドが強く観測されるようになることである.図3は CVD(HiPco)法 で合成された SWCNT をフッ素化したときのラマンスペクトルの変化を示す.先に指摘し たようにフッ素付加することにより RBM の消失が確認されるが,フッ素化処理条件を変え て F/C の小さなところで RBM を測定すると高波数側のピークが選択的に強度を減少させて いることがわかる.この高波数のピークは金属チューブに由来することから,フッ素化の 初期段階では直径の小さい金属チューブに選択的にフッ素付加が起こると考えられる.こ れは G バンドのスペクトル変化からも観測される.未反応の SWCNT の G バンドは金属チ ューブ特有の非対称な BWF (Breit-Wigner-Fano)型のプロファイルが観測されるが,フル オロ SWCNT では対称的なプロファイルに変化している.前節で紹介した金属・半導体チューブの分離はこの反応の選択性を利用しているが、どうしてそのような選択性が生じるのかについてはまだ明らかにされておらず、理論計算を含めた今後の展開に期待される. また,Gバンドのピーク位置はフッ素化により少し低波数側にシフトすることが観測される. これは結合π電子がフッ素に奪われるためにC-C結合が弱くなっていることに対応する.

図4.5はチューブ端構造が異なる2つのSWCNT (開端と閉端)をフッ素化していった時 のラマンスペクトルの変化を示す. 使用した SWCNT はレーザー蒸発法で合成されたもの で直径分布は非常に狭いことが特徴である. 図 4,5 に示すようにチューブ端の構造に関わ らずフッ素付加により RBM の強度は減少し、逆に D バンドは強くなっている.ただし、ほ ぼ同じ組成で比較すると閉端のほうが開端のものより D バンドの強度が大きい.また, F/C =0.5 程度のものでは閉端 SWCNT では RBM はまったく観測されないのに対し、開端のも のは強度は小さいが観測されている. このことから開端チューブではチューブ内側にもフ ッ素が付加することが示唆される. ここで使用した SWCNT は非常に結晶性がよく, また バンドル構造も発達しているのでバンドル由来の回折線が明瞭に観測される(図 6). 図 6 は フッ素化に伴う開端, 閉端 SWCNT の回折線の変化を調べたものだが, このようにフッ素 化によるバンドル構造の変化を捉えたものはこれが唯一である.フッ素化により回折線が 低角側にシフトしていること, つまりチューブ間隔が広くなっていることが確認される. フルオロ SWCNT の合成が報告された初期の論文ではバンドルの外側にのみフッ素が付加 すると説明されたが、それはこの測定によりチューブ間隔が広がったバンドル由来の回折 線が観測されたことから明瞭に否定される.チューブの中心間距離に対応するバンドルの 格子定数を F/C の関数で表したものが図 7 である.フッ素付加により格子定数は大きくな るが、同じ組成で比較したときにいつも開端チューブよりも閉端チューブのほうが大きい 格子定数になっている.これはさきのラマンスペクトルのところでも指摘したが、開端チ ューブの場合チューブ内側にもフッ素が付加しているため、チューブ間隔の広がりの程度 が小さくなったものと考えられる. また, F/C の増加により格子定数は大きくなるが, F/C の大きいところでは増加率が小さいことも注目される.フッ素の付加が起こるとチューブ 間を押し広げ格子定数が大きくなるが,後続のフッ素付加は押し広げられた近辺で行われ るため格子を大きくする効果が小さいものと考えられる.この実験結果や前節に紹介した 脱フッ素化によるチューブの切断の事例から、フッ素付加は SWCNT の特定の部位に帯状 に起こるものと考えられる. 最近, フッ素付加パターンに関する詳細な理論計算が行われ, 実験的に観測されている帯状のフッ素付加がエネルギー的に安定であることが示された²³⁾.

4. フルオロCNTを正極とするリチウム電池

標準還元電位が電気化学列中で最も低く,金属の中では最も理論容量が大きいリチウムを負極とする高エネルギー密度電池は,日本発世界初のフッ化グラファイトを正極とするリチウム電池 Li/(CF) として実現した.1971 年のことである。このブレークスルーが端緒となって、引き続く Li/MnO2 電池、更には、1990 年に登場したリチウムイオンニ次電池へと発展した。フッ化カーボンを正極とするリチウム電池は、その長期信頼性が高く過酷な条件下で安定した性能を発揮することから、宇宙・航空用途に更なる高エネルギー密度化を目指した研究が欧米を中心に今でも地道に続けられている。本邦においても、高信頼性のコイン形リチウムー次電池が使用環境が過酷なタイヤ空気圧監視システム用につい最近開発される等、フルオロCNTを正極とするリチウム電池の研究の発展が期待されるゆえんである。

4.1 フルオロ多層カーボンナノチューブーリチウムー次電池

MWCNT の単体フッ素によるフッ素化では,室温反応でフッ素-MWCNT 層間化合物が 生成し,300-500℃の高温反応では,C-F 共有結合性のフルオロ MWCNT が生成する.フッ 素化後のチューブは,フッ化グラファイト(CF)_nのそれと類似のX線回折パターンを示す. フルオロ MWCNT CF_{0.37}(RT),CF_x(480),CF_x(508)(括弧内の表示はフッ素化温度を示す) を正極とするリチウムー次電池の放電特性が試験セル Li/1M LiClO₄-PC/CF_x(PC:プロピレ ンカーボネート)で評価されている²⁴⁾.このセルでは,正極である CF_xの不可逆的還元反 応に伴うギブス自由エネルギー変化を電気エネルギーに変換する.室温で生成する CF_{0.37} 正極は,放電電位の平坦性に乏しいが,480℃で生成した CF_x(480)正極は高く安定した放電 電位(2.5 V)とかなり大きな放電容量(620 Ah/kg)を示す.開回路電圧が約3.5 Vと高い 割には,過電圧が小さく,放電電位が高い点がフッ化グラファイト正極より優れている.

4.2 フルオロ単層カーボンナノチューブ-リチウムー次電池

単層カーボンナノチューブの高機能化 (side-swall chemical functionalization) という視点から SWCNT のフッ素化を試み,生成したフルオロチューブの正極挙動を最初に報告したのは,Margraveら Rice 大学の研究者チームであった²⁵⁾.レーザーアブレーション法チューブおよび HiPco 法チューブから作製したフルオロ SWCNT C_xF を正極とする 2 極型リチウム セル Li / 1M LiBF₄-(DME+PC) / CF_x (DME:ジメトキシエタン;PC:プロピレンカーボネート)を構築し,定抵抗放電によって放電特性を調べている.フルオロチューブ C₂F の放電曲線は正極放電率とともに変化し,65-70%に明瞭な屈曲点を示す.この結果は,C_xF のフッ素濃度が放電とともに C₂F→C₄F のように減少し,これに対応して電子状態と熱力学関数も変化することを示している.

私たちは、放電生成物のキャラクタリーゼーションや開回路電圧(OCV)の正極利用率

依存性を含む Li/CF_xセルの電気化学的特性を詳細に調べた²⁶.

図8に HiPco 法チューブから作製したフルオロ SWCNT CF_{0.48}を正極とする3極型リチウ ムセル Li / 1M LiClO₄-(EC+DEC) / CF_{0.48} (EC:エチレンカーボネート;DEC:ジエチルカー ボネート)の定電流放電曲線 (電流密度 0.1 mA/cm²)を比較物質のフッ化グラファイト(CF)_n セルを正極とする Li /(CF)_nの放電曲線とともに示す²⁶⁾.表2には,放電特性に係わる数値 データと C-F 結合の性質を(CF)_n,フッ化フラーレンと比較して示す.半イオン性 C-F 結合 のフルオロチューブ正極は,C-F 結合エネルギーが(CF)_nのそれと比較して弱いことを反映 して,かなり高い OCV を示す.Li / CF_{0.48} セルの放電電位は,正極利用率とともに低下する. また,OCV も正極利用率とともに低下する.このような放電特性と OCV の正極利用率依存 性は、フラーレン C₆₀F_xの正極挙動と類似しており、放電反応が(CF)_n 正極とは全く異なって いることを示している.

(CF)_n正極の放電反応は,(1)式に示す不均一固相反応であることが知られている.ここで, C-(F-Li)_x・zPC(PC:プロピレンカーボネート)は、三元系の放電生成物中間体を示す.

(CF)_n + xLi→(CF)_{n-x} +(C-F-Li)_x · zPC → (CF)_{n-x} +xC + xLiF + zPC (1) 一方, CF_{0.48} では, (2)式に示すような均一固相反応で放電が進行し, 起電力に関与する活物 質が放電率 x (0.0≤x≤1.0)とともに変化し CF_{0.48-0.48x} であることを示している.

 $CF_n + nxLi \rightarrow CF_{n-nx} + nxLiF$ (2)

図9に1 atm の単体フッ素で200℃,5時間のフッ素化によるSWCNTのラマンスペクトルの変化,およびフルオロチューブの放電によるラマンスペクトルの変化を示す.SWCNTがフッ素化されると,200~400 cm⁻¹に観測される RBM が完全に消失する.放電によって, C-F 結合が還元されると,RBM は再び観測されるようになり,100%放電試料のRBM は原 試料 SWNTs のスペクトルに完全に戻ることを示している.フッ素化と放電によるDバンド とGバンドの強度比 D/G も同様な変化を示す.これらの結果は,フッ素化や放電後もチュ ーブ構造が良好に保持されていることを示している.フルオロチューブとその放電試料の TEM および SEM 観察からも,チューブ構造とバンドル構造が明瞭に観察された.

これまでの研究で、フルオロ SWCNT の化学量論的飽和組成を有する CF_{0.5}の C-F 結合が 電気化学的に段階的に還元されることが明らかにされた.これらの結果は、放電率の制御 によってフルオロチューブのフッ素濃度を定量的に制御した試料の作製が可能であること を示しており、チューブ径とカイラリティーの制御と併せて、電子状態のコントロールさ れた単層カーボンナノチューブの作製の観点からも興味深い.

5. まとめと今後の展望

SWCNT が合成されてから 10 年以上が経過し SWCNT の物理については理論的・実験的 研究により,多くのことが明らかになった.一方で,SWCNT の実用材料への応用が進まな いのは SWCNT の化学の立ち遅れが大きな要因である.このような中でフルオロ SWCNT

は金属・半導体 SWCNT の分離への応用や化学修飾の第一段階としての利用など SWCNT の化学の理解を進めるうえで重要な役割を果たすことが期待される.

フルオロ SWCNT を正極とするリチウム電池は,Li/(CF)n電池と同程度に高エネルギー密度であり,放電電位が正極利用率に比例して変化するという非常に個性的な放電特性を示す.この特徴を活かすと,例えばタイヤ空気圧モニタリングシステム電源のように,長期的信頼性と長寿命が要請されるエネルギーデバイスとして,リチウムー次電池の新たな用途開発が色々な分野で期待できそうである.

リチウム二次電池への応用に関しては、SWCNT はグラファイトの理論容量の3倍以上の 可逆容量が可能であることが明らかにされているが、不可逆容量も非常に大きいことが問 題である. SWCNTのフッ素処理によって SEI (Solid Electrolyte Interface) 生成を抑制でき れば、不可逆容量も抑制されて充放電特性が向上するが、本格的な基礎研究がまだまだ必 要な現状にある.

参考文献

- [1] 日本学術振興会フッ素化学第155委員会:フッ素化学入門,日刊工業新聞社,(1997).
- [2] H. Touhara, F. Okino : Carbon, 38, 241 (1999).
- [3] T. Nakajima, S. Kasamatsu, Y. Matsuo : Eur. J. Solid State Inorg. Chem., 33, 831 (1996).
- [4] Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley, J. L. Margrave : Nano Lett., 2, 1009 (2002).
- [5] K. J. Ziegler, Z. Gu, J. Shaver, Z. Chen, E. L. Flor, D. J. Schmidt, C. Chan, R. H. Hauge, R. E. Smalley : Institute Phys. Publishing, 16, S539 (2005).
- [6] E. T. Mickelson, I. W. Chiang, J. L. Margrave : J. Phys. Chem. B, 103, 4318 (1999).
- [7] P. R. Marcoux, J. Schreiber, P. Batail, S. Lefrant, J. Renouard, G. Jacob, D. Albertini, J-Y. Mevellec : Phys. Chem. Chem. Phys., 4 2278 (2002).
- [8] H. F. Bettinger : ChemPhysChem, 6 1169 (2005).
- [9] V. N. Khabashesku, J. L. Margrave, E. V. Barrera : Diamond Related Mater., 14, 859 (2005).
- [10] L. Valentini, J. Macan, I. Armentano, F. Mengoni, J. M. Kenny : Carbon 44, 2196 (2006).
- [11] C-M. Yang, K. H. An, J. S. Park, K. A. Park, S. C. Lim, S-H. Cho, Y. S. Lee, W. Park, C. Y. Park, Y. H. Lee : Phys. Rev. B, 73, 075419 (2006).
- [12] Y. Hattori, H. Kanoh, F. Okino, H. Touhara, D. Kasuya, M. Yudasaka, S. Iijima, K. Kaneko : J. Phys. Chem. B, 108, 9614 (2004).
- [13] H. Touhara, A. Yonemoto, K. Yamamoto, S. Komiyama, S. Kawasaki, F. Okino, T. Yanagisawa and M. Endo: Mater. Res. Soc. Symp. Proc., 858E, HH12.3.1-6 (2005).
- [14] H. Muramatsu, Y.A. Kim, T. Hayashi, M. Endo, A. Yonemoto, H. Arikai, F. Okino and H. Touhara : Chem. Commun., 2002-2004 (2005).
- [15] Y-Q. Wang, P. M. A. Sherwood : Chem. Mater., 16, 5427 (2004).
- [16] P. R. Marcoux, J. Schreiber, P. Btail, S. Lefrant, J. Renouard, G. Jacob, D. Albertini, J-Y

Mevellec : Phys. Chem. Chem. Phys., 4, 2278 (2002).

- [17] E. T. Mickelson, I. W. Chiang, J. L.Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, J. L. Margrave : J. Phys. Chem. B, 103, 4318 (1999).
- [18] S. Kawasaki, K. Komatsu, F. Okino, H. Touhara : Phys. Chem. Chem. Phys., 6, 1769 (2004).
- [19] 東原秀和,山田伊佐久:フッ素化学入門-先端テクノロジーに果たすフッ素化学の役割-第8章2節 リチウムー次電池材料;三共出版,(2004).
- [20] P. E. Pehrsson, W. Zhao, J, W. Baldwin, C. Song, J. Liu, S. Kooi, B. Zheng : J. Phys. Chem. B, 107, 5690 (2003).
- [21] K. H. An, J. G. Heo, K. G. Jeon, D. J. Bae, C. Jo, C. W. Yang, C-Y. Park, Y. H. Lee : Appl. Phys. Lett., 80, 4235 (2002).
- [22] C. P. Ewels, G. V. Lier, J-C. Charlier, M. I. Heggie, P. R. Briddon : Phys. Rev. Lett., 96, 216103 (2006).
- [23] G. V. Lier, C. P. Ewels, F. Zuliani, A. D. Vita, J-C. Charlier : J. Phys. Chem. B, 109, 6135 (2005).
- [24] Hamwi, A., Gendraud, P., Gaucher, H., Bonnamy, S. and Beguin, F., *Mol. Cryst. Liq. Cryst.*, Vol.310, pp. 185-190, (1998).
- [25] Peng, H., Gu, Z., Yang, J., Zimmerman, J.L., Willis, P.A., Bronikowski, M.J., Smalley, R.E., Hauge, R.H. and Margrave, J.L.: Fluorotubes as cathodes in lithium electrochemical cells, *Nano Lett.*, Vol.1, pp. 625-629, (2001).
- [26] H. Touhara: Fluorinated materials for energy Conversion, Chap.4 Electrochemical properties of fluorinated carbon nanotubes, Elsevier, (2005).

図1 C-F 結合性と XPS (C1s, F1s) 束縛エネルギーの関係

図 2 フルオロ SWCNT の各種機能の模式図. (a) 脱フッ素化によるチ ューブの切断, (b) フルオロ SWCNT を経由した化学修飾, (c) フルオ ロ SWCNT のアルコール中での超分散, (d) フッ素化の金属・半導体 SWCNT 選択性.

表1 各種 SWCNT のフッ素化条件,生成物の XPS(C1s, F1s) 束縛エネルギー. *は SWCNT の結晶性が低下しているため数値の掲載を見合わせた.

	フッ素化反応条件							
SWCNT 合成法	ガス 種	圧力	温度	時間	C1s	F1s	組成	文献
1 CVD(HiPco)	F2	0.1 bar	RT	30 min	284.5+291	685.5+687.5	CF0.11	[11]
2 レーザー蒸発法(Tubes@Rice)	F2/He				288.8+290.8+285.8+284.6	687.2	CF0.28	[15]
3 レーザー蒸発法(Tubes@Rice)	F2/N2		260°C	5 h	284.5+288.7	683.8	CF0.52	[16]
4 レーザー蒸発法(Tubes@Rice)	F2/He		250°C	10 h		687		[17]
	F2	1 atm	28°C	1 month	285+288	686.3	CF0.19	
5 レーザー蒸発法(metrotube)	F2	1 atm	100-200°C	5–10 h	285+288	687-688	CF0.30-0.51	[18]
	F2	1 atm	250-300°C	5–10 h	*	*	CF0.50-0.71	
6 アーク放電法	F2	1 atm	100°C	5 h	285+288.5+291.5	687.5	CF0.60	
	F2	1 atm	200°C	5 h	285+288.5+291.5	687.5	CF0.80	
7 CVD 法(HiPco)	F2	1 atm	100°C	5 h	285+288.8+291.5	687.5	CF0.28	[19]
	F2	1 atm	200°C	5 h	285+288.8+291.5	687.5	CF0.46	
8 レーザー蒸発法(Tubes@Rice)	F2/N2	1 atm	250°C	10 h	286.0+288.7	687.8		[20]
			150°C			687	CF0.19	
9 アーク放電法	F2	0.2 bar		10 min				[21]
			300°C		4本以上のピーク	691	CF0.65	

図 3 CVD(HiPco)法で合成した SWCNT のフッ素化によるラマンスペクトルの変化.

ラマンシフト / cm^{-1}

図4 レーザー蒸発法で合成した開端SWCNTのフ ッ素化によるラマンスペクトルの変化.

図5 レーザー蒸発法で合成した閉端SWCNTのフ ッ素化によるラマンスペクトルの変化.

図 6 レーザー蒸発法で合成した(a) 開端, (b) 閉端 SWCNT のフッ素化によるラマンスペクトルの変化.

図7 レーザー蒸発法で合成した開端(白丸),閉端(黒ダイヤ) SWCNTのフッ素化によるラマンスペクトルの変化.

図8 Li/1M-LiC10₄-(EC+DEC)/フルオロチューブF-SWNTs (CF_{0.48})電
池 (EC:エチレンカーボネート; DEC: ジエチルカーボネート)
および Li/1M-LiC10₄-PC)/(CF)_n (PC: プロピレンカーボネート)
電池の放電曲線(電流密度:0.1 mA/cm²)

図9 単層カーボンナノチューブのフッ素化およびフルオロチューブ正極CF_{0.48}の放電によるラ マンスペクトル変化 (F-200-5h: 200℃, 5時間フッ素化フルオロチューブCF_{0.48}; D/G: D-バ ンドとG-バンドの強度比)

	Li / (CF) _n	Li /CF _{0.48} (F-SWCNTs)	Li / $\mathrm{C_{60}F_{46}}$
OCV/ V	3.25	3.92	3.90
放電電位/V	2.5	3.5 - 2.7	3.8-2.0
電流密度 mA / m ²	0.2	0.2	0.01
エネルギー密度/Whkg ^{·1}	2194	1928	
XPS C1s/ eV	290	288.3	288
XPS F1s/ eV	690	686.8	687
C-F 結合	共有結合	半イオン性結合	半イオン性結合

表2 フッ化カーボン,フルオロチューブ,フッ化フラーレンを正極とするリチウム電池の放 電特性とC-F結合の性質